Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC
نویسندگان
چکیده
Though it has been shown recently that forest ecosystems affected by high rates of atmospheric N input are significant sources of N trace gases, reliable regional estimates of the source strength of such forests are missing. In this study, the biogeochemical model Photosynthesis and Evapotranspiration-Nitrification-Denitrification and Decomposition (PnET-N-DNDC), which simulates processes involved in N trace gas production and emission in forest soils on a daily scale, was used to calculate a regional inventory of N trace gas emissions from forest soils in southeast Germany for the year 1997. Prior to its use the model was further validated for climate and site sensitivity using multiyear observations of N trace gas fluxes at the Höglwald Forest site, Germany, and at forest sites in the Netherlands. On a regional scale the model estimates for Bavaria, Germany, that NO and N2O emissions from forest ecosystems in the year 1997 were 4.21 kt NO-N yr 1 and 6.64 kt N2O-N yr , respectively. Compared with total annual NOx emissions from combustion processes in Bavaria, total emissions of NO from forest soils are of minor importance [4.6%]. However, in summer, NO emissions from forest soils were of significant importance [8.8–22.0%] for the total regional NOx burden, since NO emissions showed a strong seasonal pattern with highest emissions during summer. Also, with regard to N2O, huge seasonal variations were found. Because of high N2O emissions during periods of freezing and thawing of forest soils, N2O fluxes in the winter period of 1997 also contributed significantly on the regional scale to total annual N2O emissions [ 38%]. Sensitivity analysis revealed that the accuracy of the N trace gas inventory strongly depended on the quality of regional input data, since the regional estimates of N trace gas fluxes calculated by PnET-N-DNDC were very sensitive to changes in soil texture, soil carbon content, site fertility, and, especially for NO emissions, to changes in soil pH.
منابع مشابه
A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation
The process-oriented model PnET-N-DNDC describing biogeochemical cycling of Cand N and N-trace gas fluxes (N2O and NO) in forest ecosystems was tested for its sensitivity to changes in environmental factors (e.g., temperature, precipitation, solar radiation, atmospheric N-deposition, soil characteristics). Sensitivity analyses revealed that predicted N-cycling and N-trace gas emissions varied w...
متن کاملDNDC: A process-based model of greenhouse gas fluxes from agricultural soils
The high temporal and spatial variability of agricultural nitrous oxide (N2O) emissions from soil makes their measurement at regional or national scales impractical. Accordingly, robust process-based models are needed. Several detailed biochemical process-basedmodels of N-gas emissions have been developed in recent years to provide site-specific and regional scale estimates of N2O emissions. Am...
متن کاملAssessing biogeochemical effects and best management practice for a wheat–maize cropping system using the DNDC model
Contemporary agriculture is shifting from a single-goal to a multi-goal strategy, which in turn requires choosing best management practice (BMP) based on an assessment of the biogeochemical effects of management alternatives. The bottleneck is the capacity of predicting the simultaneous effects of different management practice scenarios on multiple goals and choosing BMP among scenarios. The de...
متن کاملResponse of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China
It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to me...
متن کاملSources of nitrous oxide emitted from European forest soils
Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great uncertainties. In this study, we have investigated the quantitative and qualitative relationships betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002